Development of a multi-needle fiberoptic Raman spectroscopy technique for simultaneous multi-site deep tissue Raman measurements in the brain

Author:

Qiu Bocheng,Shu Chi,Huang ZhiweiORCID

Abstract

We report on the development of a multi-needle fiberoptic Raman spectroscopy (MNF-RS) technique for simultaneous multi-site deep Raman measurements in brain tissue. The multi-needle fiberoptic Raman probe is designed and fabricated using a number of 100 µm core diameter, aluminum-coated fibers under a coaxial laser excitation and Raman collection scheme, enabling simultaneous collection of deep tissue Raman spectra from a number of tissue sites. We have also developed a Raman retrieval algorithm based on the transformation matrix of each individual needle fiber probe projected to different pixels of a charge-coupled device (CCD) for recovering the tissue Raman spectra collected by each needle fiber probe, allowing simultaneous multi-channel detection by a single Raman spectrometer. High-quality tissue Raman spectra of different tissue types (e.g., muscle, fat, gray matter, and white matter in porcine brain) can be acquired in both the fingerprint (900–1800 cm−1) and high-wavenumber (2800–3300 cm−1) regions within sub-second times using the MNF-RS technique. We also demonstrate that by advancing the multi-needle fiberoptic Raman probe into deep porcine brain, tissue Raman spectra can be acquired simultaneously from different brain regions (e.g., cortex, thalamus, midbrain, and cerebellum). The significant biochemical differences across different brain tissues can also be distinguished, suggesting the promising potential of the MNF-RS technique for label-free neuroscience study at the molecular level.

Funder

National Medical Research Council (NMRC), Singapore

Merlion Fund

Academic Research Fund (AcRF) from the Ministry of Education (MOE), Singapore

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optical fiber biosensors toward in vivo detection.;Biosensors and Bioelectronics;2024-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3