Genetic optimization of mid-infrared filters for a machine learning chemical classifier

Author:

Tan Henry1ORCID,Cadusch Jasper J.1ORCID,Meng Jiajun1,Crozier Kenneth B.1ORCID

Affiliation:

1. The University of Melbourne

Abstract

Miniaturized mid-infrared spectrometers present opportunities for applications that range from health monitoring to agriculture. One approach combines arrays of spectral filters with infrared photodetectors, called filter-array detector-array (FADA) microspectrometers. A paper recently reported a FADA microspectrometer in tandem with machine learning for chemical identification. In that work, a FADA microspectrometer with 20 filters was assembled and tested. The filters were band-pass, or band-stop designs that evenly spanned the microspectrometer’s operating wavelength range. However, given that a machine learning classifier can be trained on an arbitrary filter basis, it is not apparent that evenly spaced filters are optimal. Here, through simulations with noise, we use a genetic algorithm to optimize six bandpass filters to best identify liquid and gaseous chemicals. We report that the classifiers trained with the optimized filter sets outperform those trained with evenly spaced filter sets and those handpicked to target the absorption bands of the chemicals investigated.

Funder

Australian Research Council

Defence Science Institute

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3