Rolling shutter speckle plethysmography for quantitative cardiovascular monitoring

Author:

Lee YujinORCID,Byun SangjunORCID,Yi ChangyoonORCID,Jung JaewooORCID,Lee Seung AhORCID

Abstract

We propose a new speckle-based plethysmography technique, termed rolling shutter speckle plethysmography (RSSPG), which can quantitatively measure the velocity and volume fluctuations of blood flow during the cardiac cycle. Our technique is based on the rolling shutter speckle imaging, where the short row-by-row time differences in the rolling shutter image sensors are used to measure the temporal decorrelation behavior of vertically elongated speckles from a single image capture. Temporal analysis of the speckle field provides rich information regarding the dynamics of the scattering media, such as both the dynamic scattering fraction and the speckle decorrelation time. Using a sequence of images, RSSPG can monitor fluctuations in the blood flow dynamics while separating velocity and volume changes in blood vessels and obtaining high-quality plethysmography waveforms compared to regular photoplethysmography. We demonstrate the quantitative RSSPG based on accurate fitting of the speckle dynamics model, as well as the qualitative RSSPG based on simple row-by-row correlation (RIC) calculation for fast and robust analysis. Based on exploratory in vivo experiment, we show that RSSPG can reliably measure pulsatile waveforms and heart rate variations in various conditions, potentially providing physiologically relevant information for cardiovascular monitoring.

Funder

National Research Foundation of Korea

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3