Affiliation:
1. The Institute of Mathematical Sciences
2. Training School Complex
Abstract
Detecting object with low reflectivity embedded within a noisy background is a challenging task. Quantum correlations between pairs of quantum states of light, though are highly sensitive to background noise and losses, offer advantages over traditional illumination methods. Instead of using correlated photon pairs which are sensitive, we experimentally demonstrate the advantage of using heralded single-photons entangled in polarization and path degree of freedom for quantum illumination. In the study, the object of different reflectivity is placed along the path of the signal in a variable thermal background before taking the joint measurements and calculating the quantum correlations. We show the significant advantage of using non-interferometric measurements along the multiple paths for single photon to isolate the signal from the background noise and outperform in detecting and ranging the low reflectivity objects even when the signal-to-noise ratio is as low as 0.03. Decrease in visibility of polarization along the signal path also results in similar observations. This will have direct relevance to the development of single-photon based quantum LiDAR and quantum imaging.
Funder
Principal Scientific Adviser to the Government of India
Subject
Atomic and Molecular Physics, and Optics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献