Deep learning-based Phase Measuring Deflectometry for single-shot 3D shape measurement and defect detection of specular objects

Author:

Fan Luyao1,Wu Zhaoxing1,Wang Jie1,Wei Chen1,Yue Huimin1ORCID,Liu Yong1

Affiliation:

1. University of Electronic Science and Technology of China

Abstract

Phase Measuring Deflectometry (PMD) and Structured-Light Modulation Analysis Technique (SMAT) perform effectively in shape and defect measurements of specular objects, but the difficulty of giving consideration to accuracy and speed has also restricted the further development and application of them. Inspired by recent successes of deep learning techniques for computational imaging, we demonstrate for the first time that deep learning techniques can be used to recover high-precision modulation distributions of specular surfaces from a single-frame fringe pattern under SMAT, enabling fast and high-quality defect detection of specular surfaces. This method can also be applied to recover higher-precision phase distributions of specular surfaces from a single-frame fringe pattern under PMD, so as to realize the 3D shape measurement. In this paper, we combine depthwise separable convolution, residual structure and U-Net to build an improved U-Net network. The experimental results prove that the method has excellent performance in the phase and modulation retrieval of specular surfaces, which almost reach the accuracy of the results obtained by ten-step phase-shifting method.

Funder

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3