High receiver skew-tolerant and hardware-efficient clock recovery for short-reach coherent transmission

Author:

Tang Jianwei1,Chen Hao1,Cui Sheng1,Chen Yanan2,Dai Longquan1,Zhou Keji3,Liu Deming1

Affiliation:

1. Huazhong University of Science and Technology

2. Science and Technology on Electro-Optical Information Security Control Laboratory

3. Fiberhome Telecommunication Technologies Co., Ltd.,

Abstract

The performance of the high-baud-rate and high-order-modulation-format short-reach coherent transmission systems is sensitive to the in-phase and quadrature (IQ) skew. The conventional receiver IQ skew compensation schemes based on adaptive equalizers (AEQs) suffer from the IQ skew enhanced timing jitter incurred by the clock recovery algorithm (CRA), resulting in a serious sensitivity degradation. In this paper, we first propose a novel multiplication-free timing phase error detector (TPED) with the gain insensitive to the receiver IQ skew and the capability to deal with the complex-valued Nyquist signal with an arbitrary roll-off factor and its real-valued IQ tributaries. Based on the TPED, we then propose a new all-digital feedback CRA able to compensate for the receiver IQ skew. With the novel CRA, the IQ skew enhanced timing jitter is eliminated and the receiver sensitivity can be improved by more than 1 dB for the 61 GBaud dual-polarization Nyquist 16QAM system for an IQ skew of 5 ps. Furthermore, the proposed CRA can reduce the computation complexity of the AEQ by more than 25% compared with the existing schemes by relieving the AEQ from IQ skew compensation. Both numerical simulations and experiments are carried out to validate the advantages of the proposed algorithms. The high-skew-tolerant and low-complexity CRA is a strong candidate for the power-sensitive high-speed short-reach coherent transmission systems.

Funder

National Natural Science Foundation of China

Foundation of Chinese Science and Technology on Electro-Optical Information Security Control Laboratory

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3