Abstract
In this experiment, we demonstrate a real-time intensity modulation and direct detection (IM/DD) system based on a field programmable gate array (FPGA). For high-speed parallel signal processing, we propose and implement the simplified parallel-constant modulus algorithm (CMA) and decision-directed least mean square (DDLMS) equalizers with low complexity and low latency. Moreover, the bit-class probabilistic shaping (PS) scheme is adopted with very few hardware resources. The digital signal processing (DSP) steps are implemented in the XCVU9P-FLGB2104-2-I Xilinx FPGA with a clock frequency of 230.4 MHz. Based on the experimental results, 4 × 29.4912 Gbit/s PS-pulse amplitude modulation (PAM4) signals can be successfully transmitted over 25 km of standard single-mode fiber (SSMF) while satisfying the hard-decision forward error correction (HD-FEC) threshold at 3.8 × 10−3. Compared with the uniformly distributed PAM4 signal, the low-complexity PS scheme can improve the receiver sensitivity by more than 1 dB.
Funder
National Key R&D
China National Postdoctoral Program for Innovative Talents
National Natural Science Foundation of China
Subject
Atomic and Molecular Physics, and Optics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献