Experimental study and modeling of extreme ultraviolet 4000 lines/mm diffraction gratings coated with periodic and aperiodic Al/Mo/SiC multilayers

Author:

Mahmoud Amr Hisham K.ORCID,de Rossi Sébastien,Meltchakov Evgueni,Capitanio Blandine1,Thomasset Muriel1,Vallet Maxime2,Delmotte FranckORCID

Affiliation:

1. Synchrotron SOLEIL, L’Orme des Merisiers

2. CNRS

Abstract

Multilayer coated diffraction gratings are crucial components for extreme ultraviolet (EUV) applications such as spectroscopy or spectro-imaging. However, for high groove density, the smoothening of the grating surface profile with multilayer deposition remains a limitation that requires further investigation. In this paper, we report on the design, characterization, and modeling of 4000 lines/mm diffraction gratings coated with periodic and aperiodic Al/Mo/SiC multilayers for EUV radiation. Two types of gratings with different groove depths are compared. Multilayer coatings were designed using a genetic algorithm to maximize the first-order diffraction efficiency in the 17–21 and 19–23 nm wavelength ranges at normal incidence. Periodic and aperiodic multilayers with different numbers of layers were deposited by magnetron sputtering on the two types of fused silica gratings, and the grating groove profile evolution was measured by atomic force microscopy and cross-section transmission electron microscopy. The first-order diffraction efficiency was measured in the EUV at 5° incidence using monochromatic synchrotron radiation and modeled using the rigorous coupled-wave analysis method. The simulation models refined by using the Debye–Waller factor to account for the multilayer interfacial roughness show good agreement with experimental data. The results reported in this study will allow for designing efficient EUV multilayer gratings for high-resolution spectro-imaging instruments.

Funder

Centre National d’Etudes Spatiales

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3