Dimension-variable invariant imbedding (DVIIM) T-matrix computational method for the light scattering simulation of atmospheric nonspherical particles

Author:

Shuai Hu1,Shulei Li1,Qingwei ZengORCID,Lei Liu1

Affiliation:

1. National University of Defense Technology

Abstract

The invariant imbedding (IIM) T-matrix method has shown great potential in light scattering field. However, the T-matrix need to be calculated through the matrix recurrence formula derived from the Helmholtz equation, thus its computational efficiency is much lower than Extended Boundary Condition Method (EBCM). To alleviate this problem, the Dimension-Variable Invariant Imbedding (DVIIM) T-matrix method is presented in this paper. Compared with the traditional IIM T-matrix model, the dimensions of the T-matrix and relevant matrices are gradually increasing as the iteration performed step by step, thus the unnecessary operations of large matrices can be avoided in early iterations. To optimally determine the dimension of these matrices in each iterative calculation, the spheroid-equivalent scheme (SES) is also proposed. The effectiveness of the DVIIM T-matrix method is validated from the modeling accuracy and calculation efficiency. The simulation results show that compared with traditional T-matrix method, its modeling efficiency can be improved notably, especially for the particles with large size and aspect ratio, where for the spheroid with a aspect ratio of 0.5, the computational time is cut down by 25%. Though the dimension of the T matrix is cut down in the early iterations, the computational precision of DVIIM T-matrix model is not decreased notably, and a good agreement is achieved between the calculation results of DVIIM T-matrix method, IIM T-matrix method and other well-validated models (like EBCM and DDACSAT), where the relative errors of the integral scattering parameters (e.g., extinction, absorption, scattering cross sections) are generally less than 1%.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hunan Province

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3