ZR 400  Gbit/s and 800  Gbit/s use cases, trials, deployments, and future prospects [Invited]

Author:

Davey R. P.1,Iqbal M. A.1ORCID,Wright P. D.1

Affiliation:

1. BT

Abstract

As bandwidth grows operators are moving from 100 Gbit/s to 400 Gbit/s ports on core routers with wavelengths on underlying transmission also increasing to 400 Gbit/s and higher. Developments in pluggable coherent optical transceivers such as ZR optics present different optical layer architectures: pluggable coherent transceivers inserted into the router versus external transponders and “hop-by-hop” architectures, in which packets pass through multiple intermediate routers, versus “optical express” architectures via ROADMs. The paper describes using a bespoke modeling tool to compare cost and power consumption for various 400 Gbit/s architectures, applied to the core network of a major operator as total bandwidth increases from current levels ∼28Tbit/s to a future 220 Tbit/s scenario. The model shows that, as bandwidths increase, “optical express” architectures become lower cost compared to “hop-by-hop” architectures. The paper describes a field trial of pluggable 400 Gbit/s ZR+ transceivers directly deployed in routers and transported over a ROADM network and reviews architectural options likely to arise as bandwidths increase to 800 Gbit/s. For 400 Gbit/s and higher, operators face a range of optical layer architectures: the best outcome gives the lowest cost and power consumption while enabling efficient network operations, and it could be that different solutions are best for different networks.

Publisher

Optica Publishing Group

Subject

Computer Networks and Communications

Reference9 articles.

1. Optimal channel spacing for next-gen WDM networking with 800ZR+ elastic optical transponders;Zami,2023

2. Hardware comparison of Xponders and ZR+ in metro and core networks with mixed IP and OTN traffic;Gumaste,2022

3. Comparing IP-optical architectures & WDM transport technologies in metro, regional and long-haul networks;Melle,2021

4. Techno-economic evaluations of 400G optical interconnect implementations for datacenter networks;Rokkas,2018

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Autonomous Control Operations for Energy-Efficient Packet Optical Networks;2024 24th International Conference on Transparent Optical Networks (ICTON);2024-07-14

2. Enabling IP-optical integration in core and metro networks [Invited];Journal of Optical Communications and Networking;2024-06-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3