Increase in terahertz-wave intensity in a magnetic field due to difference-frequency mixing by exciton excitation in a GaAs/AlAs multiple quantum well

Author:

Kojima Osamu1ORCID,Tarui Yuki1,Kita Takashi1,Majeed Avan2,Ivanov Pavlo23,Clarke Edmund2ORCID,Hogg Richard A.23

Affiliation:

1. Kobe University

2. University of Sheffield

3. University of Glasgow

Abstract

Magnetic fields can increase the intensity of terahertz (THz) waves due to changing the dipole moment direction using the Lorentz force. This study reports the increase in the THz-wave intensity generated by differential frequency mixing using commercial permanent magnets under exciton-excitation. While a weak magnetic field applied to a multiple quantum well increases the THz-wave intensity due to excitons, a strong field causes its decrease. According to the calculations, the increase is caused by the electron-hole separation due to the Lorentz force. Furthermore, the calculations suggest the importance of carrier acceleration to enhance the intensity. Importantly, the increase in the THz-wave intensity due to differential frequency mixing does not require a strong magnetic field and can be achieved with inexpensive commercially available magnets.

Funder

Japan Society for the Promotion of Science

JSPS International Research Fellow

Kawanishi Memorial ShinMaywa Education Foundation

Support Center for Advanced Telecommunications Technology Research Foundation

MIKIYA Science and Technology Foundation

Hyogo Foundation for Science and Technology

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3