Affiliation:
1. Changchun Institute of Optics, Fine Mechanics and Physics
2. University of Chinese Academy of Sciences
Abstract
Bright daylight photon noise and the saturation of wavefront sensors pose challenges to high-resolution daytime imaging. In this paper, a daytime hybrid wavefront sensor (HyWFS) approach for real-time wavefront sensing in daylight adaptive optics (AO) is described. The Shack-Hartmann wavefront sensor (SHWFS) algorithm is used to efficiently compensate large-scale wavefronts, while the pyramid wavefront sensor (PyWFS) algorithm offers highly sensitive correction of small wavefronts. Daylight closed-loop AO experiments were performed using the daytime HyWFS approach with both algorithms, respectively. The experiment results indicate that the proposed approach provides accurate daylight AO correction and allows for a simple switch between the two algorithms without increasing system complexity. The daytime HyWFS approach can serve as an alternative for daylight natural guide star AO, enabling high-resolution observation of resident space objects no longer limited to dawn and dusk.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Strategic Priority Research Program of the Chinese Academy of Sciences
Jilin Scientific and Technological Development Program