High-speed PGC demodulation model and method with subnanometer displacement resolution in a fiber-optic micro-probe laser interferometer

Author:

Dong Yisi1,Li Wenwen1,Zhang Jinran1,Luo Wenrui1,Fu Haijin1,Xing Xu1,Hu Pengcheng1,Dong Yongkang2ORCID,Tan Jiubin1

Affiliation:

1. Ministry of Industry and Information Technology

2. Harbin Institute of Technology

Abstract

As the key of embedded displacement measurement, a fiber-optic micro-probe laser interferometer (FMI) is of great interest in developing high-end equipment as well as precision metrology. However, conventional phase-generated carrier (PGC) approaches are for low-speed scenes and local error analysis, usually neglecting the global precision analysis and dynamic effect of system parameters under high-speed measurement, thus hindering their broad applications. We present a high-speed PGC demodulation model and method to achieve subnanometer displacement measurement precision in FMI. This model includes a global equivalent resolution analysis and revelation of the demodulation error mechanism. Utilizing this model, the failure issues regarding the PGC demodulation method under high speed and large range are addressed. Furthermore, an ultra-precision PGC demodulation algorithm based on the combination of static and dynamic delay adaptive regulation is proposed to enable high-speed and large-range displacement measurement. In this paper, the proposed model and algorithm are validated through simulation and experimental tests. The results demonstrate a displacement resolution of 0.1 nm with a standard deviation of less than 0.5 nm when measuring at a high velocity of 1.5 m/s—nearly a tenfold increase of the latest study.

Funder

National Key Research and Development Program of China

Natural Science Foundation of Heilongjiang Province

China Postdoctoral Science Foundation

National Postdoctoral Program for Innovative Talents

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3