Complex transmission matrix retrieval for a highly scattering medium via regional phase differentiation

Author:

He Qiaozhi1,Shao Rongjun,Qu Yuan1ORCID,Liu Linxian2,Ding ChunxuORCID,Yang Jiamiao1ORCID

Affiliation:

1. Institute of Marine Equipment, Shanghai Jiao Tong University

2. Shanxi University

Abstract

Accurately measuring the complex transmission matrix (CTM) of the scattering medium (SM) holds critical significance for applications in anti-scattering optical imaging, phototherapy, and optical neural networks. Non-interferometric approaches, utilizing phase retrieval algorithms, can robustly extract the CTM from the speckle patterns formed by multiple probing fields traversing the SM. However, in cases where an amplitude-type spatial light modulator is employed for probing field modulation, the absence of phase control frequently results in the convergence towards a local optimum, undermining the measurement accuracy. Here, we propose a high-accuracy CTM retrieval (CTMR) approach based on regional phase differentiation (RPD). It incorporates a sequence of additional phase masks into the probing fields, imposing a priori constraints on the phase retrieval algorithms. By distinguishing the variance of speckle patterns produced by different phase masks, the RPD-CTMR can effectively direct the algorithm towards a solution that closely approximates the CTM of the SM. We built a prototype of a digital micromirror device modulated RPD-CTMR. By accurately measuring the CTM of diffusers, we achieved an enhancement in the peak-to-background ratio of anti-scattering focusing by a factor of 3.6, alongside a reduction in the bit error rate of anti-scattering image transmission by a factor of 24. Our proposed approach aims to facilitate precise modulation of scattered optical fields, thereby fostering advancements in diverse fields including high-resolution microscopy, biomedical optical imaging, and optical communications.

Funder

National Natural Science Foundation of China

Shanghai Pujiang Program

Shanghai Jiao Tong University 2030 Initiative

Oceanic Interdisciplinary Program of Shanghai Jiao Tong University

Science Foundation of Donghai Laboratory

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3