Steerable photonic jet for super-resolution microscopy

Author:

Karamehmedović MirzaORCID,Scheel Kenneth,Listov-Saabye Pedersen Frederik,Villegas Arturo1ORCID,Hansen Poul-Erik2

Affiliation:

1. ICFO—Institut de Ciencies Fotoniques

2. Danish Fundamental Metrology

Abstract

A promising technique in optical super-resolution microscopy is the illumination of the sample by a highly localized beam, a photonic jet (also called photonic nanojet). We propose a method of computation of incident field amplitude and phase profiles that produce photonic jets at desired locations in the near field after interaction with a fixed micro-scale dielectric lens. We also describe a practical way of obtaining the incident field profiles using spatial light modulators. We expect our photonic jet design method to work for a wide range of lens shapes, and we demonstrate its application numerically using two-dimensional micro-lenses of circular and square cross-sections. We furthermore offer a theoretical analysis of the resolution of photonic jet design, predicting among other that a larger lens can produce a narrower photonic jet. Finally, we give both theoretical and numerical evidence that the waist width of the achieved designed jets is increasing linearly and slowly over a large interval of radial distances. With uniform plane wave illumination, the circular two-dimensional micro-lens produces a similar-sized jet at a fixed radial distance, while the square lens does not form a jet at all. We expect our steerable optical photonic jet probe to enable highly localized adaptive real-time measurements and drive advances in super-resolution optical microscopy and scatterometry, as well as fluorescence and Raman microscopy. Our relatively weak peak jet intensity allows application in biology and health sciences, which require high resolution imaging without damaging the sample bio-molecules.

Funder

H2020 Marie Skłodowska-Curie Actions

Innovationsfonden

European Metrology Programme for Innovation and Research

Villum Fonden

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Controllable optical chirality of vortex beams via photonic jets;Journal of the Optical Society of America B;2024-07-08

2. Finite-difference time-domain methods;Nature Reviews Methods Primers;2023-10-05

3. Photonic nanojets generated by microfabricated dielectric cylinders using proton beam writing;Applied Physics Letters;2023-10-02

4. Phase-only steerable photonic nanojets;Optics Express;2023-07-31

5. Toward Photonic Nanojet Imaging for Microscopy;2023 International Applied Computational Electromagnetics Society Symposium (ACES);2023-03-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3