Pre-equalization scheme for visible light communications with trial-and-error learning

Author:

Li Shupeng1,Zou Yi12,Liu Fangming2,Song Jian3

Affiliation:

1. South China University of Technology

2. Peng Cheng Laboratory

3. Tsinghua University

Abstract

In this Letter, we propose a novel, to the best of our knowledge, neural network pre-equalizer based on the trial-and-error (TE) mechanism for visible light communication. This approach, unlike indirect learning (IL) architecture, does not require an additional auxiliary post-equalizer. Instead, it allows the pre-equalizer to be trained directly from the transmitter side through continuous interaction with the actual system. In a 1.95-Gbps 64-QAM carrier-less amplitude phase (CAP) free space optical transmission platform, the proposed scheme demonstrates superior nonlinear approximation capabilities and noise resilience. Specifically, the TE-recurrent neural network (RNN)-based pre-equalizer exhibits signal-to-noise ratio (SNR) gains of 0.8 dB and 1.8 dB over the IL-RNN-based and IL-Volterra-based pre-equalizers, respectively. We believe this is the first application of trial-and-error learning for training pre-equalizer in visible light communications.

Funder

South China University of Technology

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3