Affiliation:
1. University of Shanghai for Science and Technology
2. Tongji University
3. Lomonosov Moscow State University
Abstract
The investigation of converged twisted beams with a helical phase structure has a remarkable impact on both fundamental physics and practical applications. Geometric metasurfaces consisting of individually orientated metal/dielectric meta-atoms provide an ultracompact platform for generating converged vortices. However, it is still challenging to simultaneously focus left-handed and right-handed circularly polarized incident beams with pure geometric phase modulation, which hinders the independent operation on topological charges between these two helical components. Here we propose and experimentally demonstrate an approach to design terahertz geometric metasurfaces that can generate helicity-independent converged vortices with homogeneous polarization states by the superposition of two orthogonal helical vortices with identical topological charges. Furthermore, the multiplexing of polarization-rotatable multiple vortices in multiple dimensions, i.e., in both longitudinal and transverse directions, and a vortex with an extended focal depth is confirmed by embedding polarization modulation into the geometric metasurfaces. The demonstrated approach provides a new way to simultaneously manipulate orthogonal helical components and expand the design dimension, enabling new applications of geometric metasurface devices in polarization optics, twisted-beam related image and edge detection, high capacity optical communication, and quantum information processing, to name a few.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
“Shuguang” Program of Shanghai Education Commission
Program of General Administration of Customs People’s Republic of China
Shanghai international joint laboratory project
111 Project
Interdisciplinary Scientific and Educational School of Moscow University “Photonic and Quantum Technologies. Digital Medicine”
Subject
Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献