Lensless holographic microscope with a time and memory-saving algorithm for large-volume imaging of organoids

Author:

Zheng Weiqiang,Wang Juan1,Zhou Yunhong,Zeng Qiang2,Zhang Cheng,Liu Li1,Yu Hui2,Yang Yuting

Affiliation:

1. China State Institute of Pharmaceutical Industry

2. Shanghai Jiao Tong University

Abstract

Organoids, the 3D culture systems derived from stem cells, are promising models for human organs. However, organoid study requires large-volume imaging with single cell resolution, which is beyond the spatial bandwidth limit of conventional optical microscopy. Herein, we propose a lensless holographic microscope empowered with a time and memory-saving algorithm. It solves the trade-off between the imaging field of view, resolution, and processing speed, and provides a practical tool for the study of organoids. We first build a compact microscopy system using a multi-angle LED illumination scheme and an on-chip structure. Then we develop a fast angular spectrum formula for fast reconstruction of oblique-illuminated coaxial holography under the under-sampling condition. Additionally, we derive a multi-angle illuminated filtered backpropagation algorithm to achieve high-precision and slice-wise recovery of 3D structures of objects. The reconstruction process demands only 1/50 of the memory required by a traditional optical diffraction tomography algorithm. Experimental results indicate that the proposed method can achieve 6.28 mm × 4.71 mm× 0.37 mm volume imaging within 104 s. Through the standardized polystyrene beads test, we demonstrate that the proposed microscope has micrometer-scale resolution in both lateral and axial directions. In addition, the 3D imaging results of salivary gland organoids show great application prospects of the proposed method in the field of living biological sampling imaging.

Funder

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3