Theoretical efficiency limit of diffractive input couplers in augmented reality waveguides

Author:

Zhao ZhexinORCID,Lee Yun-Han,Feng XiayuORCID,Escuti Michael J.ORCID,Lu Lu,Silverstein Barry

Abstract

Considerable efforts have been devoted to augmented reality (AR) displays to enable the immersive user experience in the wearable glasses form factor. Transparent waveguide combiners offer a compact solution to guide light from the microdisplay to the front of eyes while maintaining the see-through optical path to view the real world simultaneously. To deliver a realistic virtual image with low power consumption, the waveguide combiners need to have high efficiency and good image quality. One important limiting factor for the efficiency of diffractive waveguide combiners is the out-coupling problem in the input couplers, where the guided light interacts with the input gratings again and get partially out-coupled. In this study, we introduce a theoretical model to deterministically find the upper bound of the input efficiency of a uniform input grating, constrained only by Lorentz reciprocity and energy conservation. Our model considers the polarization management at the input coupler and can work for arbitrary input polarization state ensemble. Our model also provides the corresponding characteristics of the input coupler, such as the grating diffraction efficiencies and the Jones matrix of the polarization management components, to achieve the optimal input efficiency. Equipped with this theoretical model, we investigate how the upper bound of input efficiency varies with geometric parameters including the waveguide thickness, the projector pupil size, and the projector pupil relief distance. Our study shines light on the fundamental efficiency limit of input couplers in diffractive waveguide combiners and highlights the benefits of polarization control in improving the input efficiency.

Funder

Meta Reality Labs

Publisher

Optica Publishing Group

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3