Performance enhancement of solar cells based on high photoelectric conversion efficiency of h-BN and metal nanoparticles

Author:

Zhu Jun1ORCID,Jin Guangming1

Affiliation:

1. Guangxi Normal University

Abstract

In this article, we propose a new type of CdTe thin-film solar cell based on a CdTe/CdS heterojunction. We used the finite difference time domain method to simulate the propagation of electromagnetic waves in the time domain under certain boundary conditions and the change in the absorption rate of cells when optimising the structure. The simulation shows that the light absorption rate of the cell is significantly enhanced after adding h-BN and metal particles to the proposed structure. Under the irradiation of standard light AM1.5 with the wavelength range of 300 nm to 1000 nm, presenting a 90% absorption bandwidth over 700 nm, and the average absorption rate is as high as 92.9%. The short-circuit current and open-circuit voltage are 30.98 mA/cm2 and 1.155 V, respectively, and the photoelectric conversion efficiency (PCE) increases to 30.76%, which is an increase of 27.58% compared to the original PCE. The result shows that, after metal nanoparticles are embedded in the absorption layer of the cell, the free electrons on the surface of the metal particles oscillate under the action of light. The electromagnetic field is confined to a small area on the surface of the particles and is enhanced, which is beneficial for the absorption of light by the cells. This study provides a basis for theoretical research and feasible solutions for the manufacture of thin-film solar cells with a high absorption rate and high efficiency.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangxi Province

Innovation Project of Guangxi Graduate Education

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3