Femtosecond Laser Interaction with Metallic Tungsten and Nonequilibrium Electron and Lattice Temperatures

Author:

Fujimoto J.G.,Liu J.M.,Ippen E.P.,Bloembergen N.

Abstract

Multiphoton photoelectron emission from metals has been the subject of experimental and theoretical investigation for several years [1]. The development of high intensity ultrashort pulse laser sources has made possible the extension of these studies into the picosecond time regime [2,3]. For intense pulses of short enough duration, it has been postulated that a transient nonequilibrium between the electrons and phonons may be generated [4]. This phenomenon has been termed anomalous heating and is predicted when the laser pulse durations are comparable to or shorter than the electron-phonon energy relaxation time. Because of the smaller heat capacity of the electron gas, heating of the electrons to temperatures in excess of the lattice melting temperature would then be possible. Previous experimental investigations of photoelectron emission have been performed with picosecond pulses in attempts to observe anomalous heating [2,3]. To date, none have achieved the temporal resolution necessary for such an observation. However, very recently, indirect eveidence of transient heating has been reported using picosecond reflectivity measurements in copper [5].

Publisher

Optica Publishing Group

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3