Affiliation:
1. Universities of Shaanxi Province
Abstract
A universally applicable approach is proposed for the fabrication of fiber-optic polymer sensors. The hollow-core fibers (HCFs) with inner diameters of 30 µm, 50 µm, and 75 µm are spliced coaxially with dual-hole fiber (DHF) or photonic crystal fiber (PCF). Owing to the sized-matched air holes within HCF and DHF/PCF, an interconnected in-fiber microchannel is constructed, which facilitates rapid and complete filling of the HCF’s central hole with liquid glue. After the ultraviolet-induced polymerization, a polymer Fabry-Perot interferometer is achieved by cutting the HCF end with a desired cavity length. Besides, the interference visibility is significantly enhanced by adding a refractive-index-modulated polymer cap onto the cutting surface. Experimental results demonstrate the optimized interference spectra and the interconnection of the matched air-hole fibers. The polymer sensor exhibits a signal-to-noise ratio of 56.8 dB for detecting pulsed ultrasonic waves, which is more than twice that of a partially polymer-filled sensor. Due to the hermetically-sealed structure, the sensor probe presents constrained performance with a temperature sensitivity of 230.2 pm/°C and a humidity sensitivity of 93.7 pm/%RH, which can be further improved by releasing the polymer waveguide from fiber cladding. Based on interconnected holey fibers, the proposed approach has a uniform size-controlled polymer waveguide dimension with increased spectrum visibility, rendering it suitable for a diverse range of microstructure-matched optical fibers.
Funder
Natural Science Basic Research Program of Shaanxi Province
National Natural Science Foundation of China