Advanced fabrication of polymer waveguide interferometric sensor utilizing interconnected holey fibers

Author:

Shao Zhihua1ORCID,Liu Jing1,Zhou Kuangyu1,Zhang Ziyu1,Liang Ruiming1,Qiao Xueguang1

Affiliation:

1. Universities of Shaanxi Province

Abstract

A universally applicable approach is proposed for the fabrication of fiber-optic polymer sensors. The hollow-core fibers (HCFs) with inner diameters of 30 µm, 50 µm, and 75 µm are spliced coaxially with dual-hole fiber (DHF) or photonic crystal fiber (PCF). Owing to the sized-matched air holes within HCF and DHF/PCF, an interconnected in-fiber microchannel is constructed, which facilitates rapid and complete filling of the HCF’s central hole with liquid glue. After the ultraviolet-induced polymerization, a polymer Fabry-Perot interferometer is achieved by cutting the HCF end with a desired cavity length. Besides, the interference visibility is significantly enhanced by adding a refractive-index-modulated polymer cap onto the cutting surface. Experimental results demonstrate the optimized interference spectra and the interconnection of the matched air-hole fibers. The polymer sensor exhibits a signal-to-noise ratio of 56.8 dB for detecting pulsed ultrasonic waves, which is more than twice that of a partially polymer-filled sensor. Due to the hermetically-sealed structure, the sensor probe presents constrained performance with a temperature sensitivity of 230.2 pm/°C and a humidity sensitivity of 93.7 pm/%RH, which can be further improved by releasing the polymer waveguide from fiber cladding. Based on interconnected holey fibers, the proposed approach has a uniform size-controlled polymer waveguide dimension with increased spectrum visibility, rendering it suitable for a diverse range of microstructure-matched optical fibers.

Funder

Natural Science Basic Research Program of Shaanxi Province

National Natural Science Foundation of China

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3