Twin-tube terahertz fiber for a polarization filter

Author:

Jiang Xiaogang12,Yang Haoling1,Luo Weixuan,Liu Huabei,Chen Daru,Liu Xuan3

Affiliation:

1. Zhejiang University

2. NingboTech University

3. Huangshan University

Abstract

A simple polymer twin-tube terahertz (THz) fiber that can be used as a polarization filter is proposed and investigated using the finite element method in this paper. The twin-tube THz fiber consists of two closely spaced identical tubes located symmetrically inside the protecting jacket. The simulation results show that the y-polarization fundamental mode (YPFM) can be well confined between the two tube walls near the fiber center, while the x-polarization fundamental mode (XPFM) has a huge confinement loss due to the coupling with the tube mode. For the fundamental mode (FM), a polarization extinction ratio (PER) of 30 dB can be realized after a 1.3 cm length of the fiber, and the insertion loss of the YPFM is less than 0.5 dB at 1 THz. In addition, higher order modes (HOMs) can be effectively suppressed by further increasing the fiber length. Simulation results indicate that all HOMs have powers being 30 dB lower than that of the supported YPFM after a 7.44 cm length of the fiber, and the insertion loss of the YPFM is less than 2.7 dB at 1 THz. Furthermore, the effects of fiber structure parameters on the loss properties are investigated, proving that the proposed fiber has a good fabrication tolerance. Owing to the simple structure, the proposed fiber polarization filter is easy to be fabricated and low-cost, which makes it a potential application in commercial THz systems.

Funder

NingboTech University

Natural Science Foundation of Zhejiang Province

Science and Technology Department of Zhejiang Province

Huangshan University

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3