Abstract
The capability to modulate the intensity of an optical beam has scientific and practical significance. In this work, we demonstrate Y-Z cut lithium niobate acousto-optic modulators with record-high modulation efficiency, requiring only 1.5 W/cm2 for 100% modulation at 7 MHz. These modulators use a simple fabrication process; coating the top and bottom surfaces of a thin lithium niobate wafer with transparent electrodes. The fundamental shear acoustic mode of the wafer is excited through the transparent electrodes by applying voltage with frequency corresponding to the resonant frequency of this mode, confining an acoustic standing wave to the electrode region. Polarization of light propagating through this region is modulated at the applied frequency. Polarization modulation is converted to intensity modulation by placing the modulator between polarizers. To showcase an important application space for this modulator, we integrate it with a standard image sensor and demonstrate 4 megapixel time-of-flight imaging.
Funder
Stanford SystemX Alliance
Office of Naval Research
National Science Foundation
Subject
Atomic and Molecular Physics, and Optics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献