Thermal stress analysis of laser cleaning of aluminum alloy oxide film

Author:

Dong Hang1,Li Jingyi1,Li Yahui1,Zhang Wei1,Jin Guangyong12ORCID

Affiliation:

1. Changchun University of Science and Technology

2. Changchun University of Technology

Abstract

In this paper, a theoretical model for laser cleaning of aluminium alloy oxide film is presented from the perspective of thermal stress. Additionally, we developed a two-dimensional axisymmetric finite element model for calculation. Thermal stresses result from thermal expansion. Using thermodynamic equations, numerical calculations enable the determination of a theoretical cleaning threshold by comparing the thermal stresses to the adhesion between the oxide film and the substrate. Through theory and experiments, it is known that the greater the laser fluence, the better is the cleaning effect. The findings indicate that cleaning of the oxide film on aluminum alloys can be achieved under appropriate parameters. The cleaning threshold for laser cleaning of the oxide film is determined to be 3629.47J/cm2 (continuous laser fluence is 3628.73J/cm2; nanosecond laser fluence is 0.74J/cm2). The thermal stress model of laser cleaning is highly useful for selecting the appropriate laser flux in practical applications. Both a simulation and experimental results can provide an explanation for the mechanism of interaction between the laser and the aluminum alloy oxide film, demonstrating that thermal stress is one of the cleaning mechanisms during the laser cleaning process of the oxide film.

Funder

Changchun Science and Technology Planning Project

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3