Affiliation:
1. Hainan University
2. Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology
3. HUST-Suzhou Institute for Brainsmatics
Abstract
The hippocampus is a critical brain region. Transcriptome data provides valuable insights into the structure and function of the hippocampus at the gene level. However, transcriptome data is often incomplete. To address this issue, we use the convolutional neural network model to repair the missing voxels in the hippocampus region, based on Allen institute coronal slices in situ hybridization (ISH) dataset. Moreover, we analyze the gene expression correlation between coronal and sagittal dataset in the hippocampus region. The results demonstrated that the trend of gene expression correlation between the coronal and sagittal datasets remained consistent following the repair of missing data in the coronal ISH dataset. In the last, we use repaired ISH dataset to identify novel genes specific to hippocampal subregions. Our findings demonstrate the accuracy and effectiveness of using deep learning method to repair ISH missing data. After being repaired, ISH has the potential to improve our comprehension of the hippocampus's structure and function.
Funder
Natural Science Foundation of Hainan Province
Ministry of Science and Technology of the People's Republic of China
National Natural Science Foundation of China
Hainan University