Study on high-precision three-dimensional reconstruction of pulmonary lesions and surrounding blood vessels based on CT images

Author:

Chen Chaoxiang12,Fu Zhiyong3,Ye Shengli4,Zhao Chenlu5,Golovko Vladimir6,Ye Shiping2ORCID,Bai Zhican2

Affiliation:

1. Shulan International Medical School, Zhejiang Shuren University

2. International Science and Technology Cooperation Base of Zhejiang Province: Remote Sensing Image Processing and Application

3. Huzhou University

4. Zhejiang Shuren University

5. HoHai University

6. Brest State Technical University

Abstract

The adoption of computerized tomography (CT) technology has significantly elevated the role of pulmonary CT imaging in diagnosing and treating pulmonary diseases. However, challenges persist due to the complex relationship between lesions within pulmonary tissue and the surrounding blood vessels. These challenges involve achieving precise three-dimensional reconstruction while maintaining accurate relative positioning of these elements. To effectively address this issue, this study employs a semi-automatic precise labeling process for the target region. This procedure ensures a high level of consistency in the relative positions of lesions and the surrounding blood vessels. Additionally, a morphological gradient interpolation algorithm, combined with Gaussian filtering, is applied to facilitate high-precision three-dimensional reconstruction of both lesions and blood vessels. Furthermore, this technique enables post-reconstruction slicing at any layer, facilitating intuitive exploration of the correlation between blood vessels and lesion layers. Moreover, the study utilizes physiological knowledge to simulate real-world blood vessel intersections, determining the range of blood vessel branch angles and achieving seamless continuity at internal blood vessel branch points. The experimental results achieved a satisfactory reconstruction with an average Hausdorff distance of 1.5 mm and an average Dice coefficient of 92%, obtained by comparing the reconstructed shape with the original shape,the approach also achieves a high level of accuracy in three-dimensional reconstruction and visualization. In conclusion, this study is a valuable source of technical support for the diagnosis and treatment of pulmonary diseases and holds promising potential for widespread adoption in clinical practice.

Funder

Ministry of Science and Technology of the People's Republic of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3