Extended angular-spectrum modeling (EASM) of light energy transport in scattering media

Author:

Yan Meng1,Gong Mali1,Ma Jianshe2

Affiliation:

1. Key Laboratory of Photonic Control Technology (Tsinghua University)

2. Tsinghua Shenzhen International Graduate School

Abstract

The exact modeling of light transport in scattering media is critical in biological imaging, free-space communication, and phosphor-converted lighting. Angular spectrum is proved to be a fast and effective approach to reconstructing the wavefront dynamics during the propagation in scattering media, however, finding it difficult in acquiring the wavefront and energy change simultaneously. Besides, conventional methods for energy tracing, such as the Monte Carlo method, are inefficient in speed and hard to simulate the wavefront change. Here, we propose an extended angular-spectrum modeling (EASM) approach using tenuous scattering approximate solutions to obtain a time-efficient and accurate method for reconstruction of energy and wavefront dynamics in various scattering media. The generality of our method is numerically simulated and experimentally verified with a set of scattering media with different properties. EASM has a time advantage under the guarantee of calculation accuracy, especially when calculating several thickness changes after the calculation model is established. Furthermore, multi-layered media can also be simulated by EASM with a good precision. The results suggest that EASM performs certain computations more efficiently than the conventional method and thus provides an effective and flexible calculation tool for scattering media.

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3