Underwater object detection and temporal signal detection in turbid water using 3D-integral imaging and deep learning

Author:

Joshi RakeshORCID,Usmani Kashif,Krishnan Gokul,Blackmon Fletcher1,Javidi BahramORCID

Affiliation:

1. SAAB, Inc.

Abstract

Underwater scattering caused by suspended particles in the water severely degrades signal detection performance and poses significant challenges to the problem of object detection. This paper introduces an integrated dual-function deep learning-based underwater object detection and classification and temporal signal detection algorithm using three-dimensional (3D) integral imaging (InIm) under degraded conditions. The proposed system is an efficient object classification and temporal signal detection system for degraded environments such as turbidity and partial occlusion and also provides the object range in the scene. A camera array captures the underwater objects in the scene and the temporally encoded binary signals transmitted for the purpose of communication. The network is trained using a clear underwater scene without occlusion, whereas test data is collected in turbid water with partial occlusion. Reconstructed 3D data is the input to a You Look Only Once (YOLOv4) neural network for object detection and a convolutional neural network-based bidirectional long short-term memory network (CNN-BiLSTM) is used for temporal optical signal detection. Finally, the transmitted signal is decoded. In our experiments, 3D InIm provides better image reconstruction in a degraded environment over 2D sensing-based methods. Also, reconstructed 3D images segment out the object of interest from occlusions and background which improves the detection accuracy of the network with 3D InIm. To the best of our knowledge, this is the first report that combines deep learning with 3D InIm for simultaneous and integrated underwater object detection and optical signal detection in degraded environments.

Funder

Office of Naval Research

Air Force Office of Scientific Research

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3