Visible light fingerprint database recovery algorithm based on CP decomposition

Author:

Zhang Licheng1,Zhang Wence1,Bao Xu1

Affiliation:

1. Jiangsu University

Abstract

Visible light communication(VLC) is a new method of indoor communication. It can provide an effective solution for indoor positioning. Fingerprint-based visible light positioning(VLP) has been widely studied for its feasibility and high accuracy. The acquisition of ‘fingerprint database’ is crucial for accurate VLP. However, sparse sensors such as photodiode(PD) can only be arranged because of the space-limited scenario and high costs. Correspondingly, it results in the loss of the fingerprint database. Therefore, it is indispensable to solve the problem of how to effectively and accurately recover the fingerprint database from measurements of sparsely arranged sensors. In this paper, we propose a spatio-temporal constraint tensor completion (SCTC) algorithm based on CANDECOMP/PARAFAC (CP) decomposition to recover the fingerprint database from measurements of sparsely arranged sensors. Specifically, we model the measurements from the spatial and temporal dimensions as a tensor, and formulate the optimization problem based on the low-rank feature of the tensor. To improve the recovery accuracy, spatial and temporal constraint matrices are introduced to effectively constrain the optimization direction when completing the tensor. Spatial constraint matrices are constructed by utilizing the mode-n expansion matrix of the tensor based on the undirected graph theory. Accordingly, the Toeplitz matrix is used as the temporal constraint matrix to excavate the temporal correlation of the tensor. Since the optimization problem is non-convex and difficult to solve, we introduce CP decomposition to decompose the tensor into several factor matrices. By solving the factor matrices, the original tensor is reconstructed. The performance of the proposed SCTC algorithm is confirmed via experimental measured data.

Funder

Graduate Research and Innovation Projects of Jiangsu Province

The Six talent peak high level talent plan projects of Jiangsu Province

Project 333 of Jiangsu Province

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3