Affiliation:
1. Peking University Shenzhen Graduate School
2. Chinese Academy of Sciences
Abstract
Due to the widespread applications of high-dimensional representations in many fields, the three-dimension (3D) display technique is increasingly being used for commercial purpose in a holographic-like and immersive demonstration. However, the visual discomfort and fatigue of 3D head mounts demonstrate the limits of usage in the sphere of marketing. The compressive light field (CLF) display is capable of providing binocular and motion parallaxes by stacking multiple liquid crystal screens without any extra accessories. It leverages optical viewpoint fusion to bring an immersive and visual-pleasing experience for viewers. Unfortunately, its practical application has been limited by processing complexity and reconstruction performance. In this paper, we propose a dual-guided learning-based factorization on polarization-based CLF display with depth-assisted calibration (DAC). This substantially improves the visual performance of factorization in real-time processing. In detail, we first take advantage of a dual-guided network structure under the constraints of reconstructed and viewing images. Additionally, by utilizing the proposed DAC, we distribute each pixel on displayed screens following the real depth. Furthermore, the subjective performance is increased by using a Gauss-distribution-based weighting (GDBW) toward the concentration of the observer’s angular position. Experimental results illustrate the improved performance in qualitative and quantitative aspects over other competitive methods. A CLF prototype is assembled to verify the practicality of our factorization.
Funder
National Science Foundation
Subject
Atomic and Molecular Physics, and Optics
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献