Narrow-bandpass transparent/diffusing materials using soft scattering based on dispersed refractive index difference

Author:

Zhu Junfeng1,Wan Lei23ORCID,Zhao Chenxi1,Liu Weiping2,Oki Yuji1,Yoshioka Hiroaki1ORCID

Affiliation:

1. Kyushu University

2. Jinan University

3. Huazhong University of Science and Technology

Abstract

An improved random walk scattering model that can be used for soft scattering based on the dispersion of the refractive index difference was developed. This model improves on previous models by introducing a medium thickness parameter and can explain the spectral performance of transparent/diffusive materials with different scatterer concentrations and thicknesses, as well as determine the optimal narrowing conditions for the bandpass spectra by combining Rayleigh-Gans-Debye and Hulst approximation calculations. Guided by the theory, transparent/diffusive media based on CaF2 particles suspended in a PDMS (polydimethylsiloxane) matrix were investigated. Disordered micron-sized CaF2 particles with a narrowed particle distribution were obtained by precipitation and centrifugal separation of ultra-pure milled CaF2 particles to remove the fractions smaller than 1 µm and larger than 20 µm, with removal rates of approximately 75% and 100%, respectively. Consequently, a diffuser material with a high (80 wt.%) concentration CaF2 particles dispersed in a low-viscosity PDMS matrix was successfully fabricated, which exhibited an effective transmittance bandwidth as low as 12 nm FWHM (full width at half maximum). Moreover, different bandpass filter diffuser devices with transmission peaks at 248, 257, and 272 nm were obtained by adjusting the PDMS matrix material. In particular, the 257 nm transmission peak filter diffuser exhibited a true narrow bandwidth of 9 nm in an integrated module containing a UV LED (ultraviolet light-emitting diode).

Funder

National Natural Science Foundation of China

Japan Society for the Promotion of Science

Wuhan National Laboratory for Optoelectronics

Science Foundation of Guangzhou City

China Scholarship Council

Publisher

Optica Publishing Group

Subject

Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3