Abstract
Metasurfaces provide a new approach for planar optics and thus have realized multifunctional meta-devices with different multiplexing strategies, among which polarization multiplexing has received much attention due to its convenience. At present, a variety of design methods of polarization multiplexed metasurfaces have been developed based on different meta-atoms. However, as the number of polarization states increases, the response space of meta-atoms becomes more and more complex, and it is difficult for these methods to explore the limit of polarization multiplexing. Deep learning is one of the important routes to solve this problem because it can realize the effective exploration of huge data space. In this work, a design scheme for polarization multiplexed metasurfaces based on deep learning is proposed. The scheme uses a conditional variational autoencoder as an inverse network to generate structural designs and combines a forward network that can predict meta-atoms’ responses to improve the accuracy of designs. The cross-shaped structure is used to establish a complicated response space containing different polarization state combinations of incident and outgoing light. The multiplexing effects of the combinations with different numbers of polarization states are tested by utilizing the proposed scheme to design nanoprinting and holographic images. The polarization multiplexing capability limit of four channels (a nanoprinting image and three holographic images) is determined. The proposed scheme lays the foundation for exploring the limits of metasurface polarization multiplexing capability.
Funder
National Natural Science Foundation of China
National Key Research and Development Program of China
Subject
Atomic and Molecular Physics, and Optics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献