Affiliation:
1. Humboldt-Universität zu Berlin
2. Max-Born-Institut
3. NanoPhoton - Center for Nanophotonics
Abstract
Photonic and plasmonic nanostructures almost unavoidably exhibit some degree of surface roughness for which the details depend on the fabrication process. A corresponding quantitative modeling thus requires the separation of numerical errors from the effects of roughness as well as the systematic construction of rough surfaces with prescribed properties. Here, we present a practical approach for constructing meshes of general rough surfaces with given autocorrelation functions based on the unstructured meshes of nominally smooth surfaces. The approach builds on a well-known method to construct correlated random numbers from white noise using a decomposition of the autocorrelation matrix. We discuss important details pertaining to the application of the approach for modeling of surface roughness and provide a corresponding software implementation. As an example application, we demonstrate the impact of surface roughness on the resonance frequencies and quality factors of a plasmonic nano-sphere dimer using an open-source boundary finite-element Maxwell solver. The approach can be utilized within a broad range of numerical methods to analyze the effects of surface roughness in various fields of science and engineering.
Funder
Bundesministerium für Bildung und Forschung
Deutsche Forschungsgemeinschaft
Danmarks Grundforskningsfond
Subject
Atomic and Molecular Physics, and Optics,Statistical and Nonlinear Physics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献