Abstract
There is an increasing demand for high-precision gas absorption spectroscopy in basic research and industrial applications, such as gas tracking and leak warning. In this Letter, a novel, to the best of our knowledge, high-precision and real-time gas detection method is proposed. A femtosecond optical frequency comb is used as the light source, and a broadening pulse containing a range of oscillation frequencies is formed after passing through a dispersive element and a Mach–Zehnder interferometer. Four absorption lines of H13C14N gas cells are measured at five different concentrations within a single pulse period. A single scan detection time of only 5 ns is obtained along with a coherence averaging accuracy of 0.0055 nm. High-precision and ultrafast detection of the gas absorption spectrum is accomplished while overcoming complexities related to the acquisition system and light source that are encountered in existing methods.
Funder
National Key Research and Development Program of China
Subject
Atomic and Molecular Physics, and Optics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献