Multi-tool optimization for computer controlled optical surfacing

Author:

Ke Xiaolong1,Wang Tianyi2ORCID,Zhang Zili3,Huang Lei2ORCID,Wang Chunjin3ORCID,Negi Vipender S.45ORCID,Pullen Weslin C.6,Choi Heejoo67,Kim Daewook67,Idir Mourad2

Affiliation:

1. Xiamen University of Technology

2. Brookhaven National Laboratory

3. The Hong Kong Polytechnic University

4. Council of Scientific and Industrial Research-Central Scientific Instruments Organisation (CSIR-CSIO)

5. Academy of Scientific and Innovative Research (AcSIR)

6. the University of Arizona

7. Univ. of Arizona

Abstract

With the rapid development of precision technologies, the demand of high-precision optical surfaces has drastically increased. These optical surfaces are mainly fabricated with computer controlled optical surfacing (CCOS). In a CCOS process, a target surface removal profile is achieved by scheduling the dwell time for a set of machine tools. The optimized dwell time should be positive and smooth to ensure convergence to the target while considering CNC dynamics. The total run time of each machine tool is also expected to be balanced to improve the overall processing efficiency. In the past few decades, dwell time optimization for a single machine tool has been extensively developed. While the methods are applicable to multi-tool scenarios, they fail to consider the overall contributions of multiple tools simultaneously. In this paper, we conduct a systematic study on the strategies for multi-tool dwell time optimization and propose an innovative method for simultaneously scheduling dwell time for multiple tools for the first time. First, the influential factors to the positiveness and smoothness of dwell time solutions for a single machine tool are analyzed. The compensation strategies that minimize the residual while considering the CNC dynamics limit are then proposed. Afterwards, these strategies are extended to the proposed multi-tool optimization that further balances the run time of machine tools. Finally, the superiority of each strategy is carefully studied via simulation and experiment. The experiment is performed by bonnet polishing a 60 mm × 60 mm mirror with three tools of different diameters (i.e., 12 mm, 8 mm, and 5 mm). The figure error of the mirror is reduced from 45.42 nm to 11.18 nm root mean square in 13.28 min. Moreover, the measured polishing result well coincides with the estimation, which proves the effectiveness of the proposed method.

Funder

Natural Science Foundation of Fujian Province

Brookhaven National Laboratory

Office of Science

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Reference39 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3