Affiliation:
1. Ministry of Industry and Information Technology
2. Ministry of Education
Abstract
We have developed and experimentally investigated a long-range 1.645 µm coherent Doppler wind lidar (CDWL) system. A compact 1.645 µm single-frequency Er:YAG laser is utilized as the laser transmitter. The impact of laser transmitter parameters on wind detection was assessed using the figure of merit (FOM) concept. To enhance the measurement efficiency, the influence of wave aberrations on the heterodyne efficiency was analyzed. A Galilean telescope with an optical aperture of 100 mm is designed as the optical antenna based on the analysis. The line of sight (LOS) detection range exceeds 30.42 km with a data rate of 1 Hz at an elevation angle of 3.5°. To evaluate the effectiveness of the CDWL, comparison experiments were conducted between the 1.645 µm CDWL and a calibrated 1.55 µm CDWL, revealing a correlation coefficient of 0.9816 for the whole detection path in the wind velocity measurement.
Funder
National Natural Science Foundation of China