Soliton molecules and their scattering by a localized P T-symmetric potential in atomic gases

Author:

Qin LuORCID,Hang Chao12ORCID,Shi Zeyun3ORCID,Qian Jing1ORCID,Feng Xuejing,Zhang Yingying,Xia Shiqiang,Zhu Zunlue,Liu Wuming4ORCID,Zhao XingdongORCID

Affiliation:

1. East China Normal University

2. New York University at Shanghai

3. Hubei University of Automotive Technology

4. Chinese Academy of Sciences

Abstract

We propose a physical scheme to study the formation of optical soliton molecules (SMs), consisting of two solitons bound together with a π-phase difference, and the scattering of SMs by a localized parity-time (PT)-symmetric potential. In order to stabilize SMs, we apply an additional space-dependent magnetic field to introduce a harmonic trapping potential for the two solitons and balance the repulse interaction induced by the π-phase difference between them. On the other hand, a localized complex optical potential obeying PT symmetry can be created through an incoherent pumping and spatial modulation of the control laser field. We investigate the scattering of optical SMs by the localized PT-symmetric potential, which exhibits evident asymmetric behavior and can be actively controlled by changing the incident velocity of SMs. Moreover, the PT symmetry of the localized potential, together with the interaction between two solitons of the SM, can also have a significant effect on the SM scattering behavior. The results presented here may be useful for understanding the unique properties of SMs and have potential applications in optical information processing and transmission.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3