Abstract
A quantum sensor network with multipartite entanglement offers a sensitivity advantage in optical phase estimation over the classical scheme. To tackle richer sensing problems, we construct a distributed sensor network with four nodes via four partite entanglements, unveil the estimation of the higher order derivative of radio-frequency signal phase, and unlock the potential of quantum target ranging and space positioning. Taking phased-array radar as an example, we demonstrate the optimal quantum advantages for space positioning and target ranging missions. Without doubt, the demonstration that endows innovative physical conception opens up widespread application of quantum sensor networks.
Funder
National Natural Science Foundation of China
National Key Research and Development Program of China
Key R&D Program of Shanxi
Program for Sanjin Scholar of Shanxi Province
Subject
Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献