Abstract
Fiber Bragg grating (FBG) sensors have been widely applied in various applications, especially for structural health monitoring. Low cost, wide range, and low error are necessary for an excellent performance FBG sensor signal demodulation system. Yet the improvement of performance is commonly accompanied by costly and complex systems. A high-performance, low-cost wavelength interrogation method for FBG sensors was introduced in this paper. The information from the FBG sensor signal was extracted by the array waveguide grating (AWG) and fed into the proposed cascaded neural network. The proposed network was constructed by cascading a convolutional neural network and a residual backpropagation neural network. We demonstrate that our network yields a vastly significant performance improvement in AWG-based wavelength interrogation over that given by other machine learning models and validate it in experiments. The proposed network cost-effectively widens the wavelength interrogation range of the demodulation system and optimizes the wavelength interrogation error substantially, also making the system scalable.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Hainan Province
Key Science and Technology Program of Haikou City
Wuhan National Laboratory for Optoelectronics
National Key Technology Support Program
Major Science and Technology Project of Hainan Province
Scientific Research Starting Foundation of Hainan University
Subject
Atomic and Molecular Physics, and Optics
Cited by
42 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献