Experimental study of the effect of pump pulse duration on liquid crystal laser performance

Author:

Brown Calum M.ORCID,Pakamoryte IevaORCID,Hands Philip J. W.ORCID

Abstract

Much work has been done to understand the factors that impact photonic band-edge liquid crystal (LC) laser threshold and slope efficiency, two parameters often stated to quantify performance. Conventionally, LC lasers are optically pumped using Q-switched lasers with a fixed pulse duration, and thus the effect of pump pulse duration on LC laser performance has received little attention. While some studies have been published at different pump pulse durations, these use different laser sources and experimental conditions, making the data incomparable. By exploiting a recent breakthrough in laser diode pumping, our experimental results prove and quantify the detrimental effect of an increase in pump pulse duration on LC laser performance. We also show that the dependency of threshold on pump pulse duration depends on how threshold is defined, owing to an ambiguity in the definition of pulse energy in systems where peak power and pulse duration can be independently controlled. For improved comparison within the literature on LC laser device performance, we thus propose an alternative convention, whereby threshold is stated in units of peak power density.

Funder

Engineering and Physical Sciences Research Council

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3