Affiliation:
1. Key Laboratory of Information Photonics Technology
2. Key Laboratory of Photoelectronic Imaging Technology and System
Abstract
1.6 µm high-order vortex modes carrying orbital angular momentums (OAMs) play significant roles in long-range Doppler lidars and other remote sensing. Amplification of 1.6 µm high-order vortex modes is an important way to provide high-power laser sources for such lidars and also enable the weak echo signal to be amplified so that it can be analyzed. In this work, we propose a four-pass Er:YAG vortex master-oscillator-power-amplification (MOPA) system to amplify 1.6 µm high-order vortex modes. In the proof-of-concept experiments, 1.6 µm single OAM mode (l = 3) is amplified successfully and the gain ranging from 1.88 to 2.36 is achieved. Multiplexed OAM mode (l=±3) is also amplified with favorable results. This work addresses the issue as the low gain of Er:YAG vortex MOPA, which provides a feasible path for 1.6 µm high-order vortex modes amplification.
Funder
National Natural Science Foundation of China
National Key Research and Development Program of China
National Defense Basic Scientific Research Program of China
Beijing Municipal Natural Science Foundation
Special Fund for Basic Scientific Research of Central Universities of China
National Postdoctoral Program for Innovative Talents
Subject
Atomic and Molecular Physics, and Optics