Affiliation:
1. Maritime, and Materials Engineering, Delft University of Technology
2. IGT & US Devices and Systems Department
3. Eindhoven University of Technology (TU/e)
Abstract
Emerging intraoperative tumor margin assessment techniques require the development of more complex and reliable organ phantoms to assess the performance of the technique before its translation into the clinic. In this work, electrically conductive tissue-mimicking materials (TMMs) based on fat, water and agar/gelatin were produced with tunable optical properties. The composition of the phantoms allowed for the assessment of tumor margins using diffuse reflectance spectroscopy, as the fat/water ratio served as a discriminating factor between the healthy and malignant tissue. Moreover, the possibility of using polyvinyl alcohol (PVA) or transglutaminase in combination with fat, water and gelatin for developing TMMs was studied. The diffuse spectral response of the developed phantom materials had a good match with the spectral response of porcine muscle and adipose tissue, as well as in vitro human breast tissue. Using the developed recipe, anatomically relevant heterogeneous breast phantoms representing the optical properties of different layers of the human breast were fabricated using 3D-printed molds. These TMMs can be used for further development of phantoms applicable for simulating the realistic breast conserving surgery workflow in order to evaluate the intraoperative optical-based tumor margin assessment techniques during electrosurgery.
Subject
Atomic and Molecular Physics, and Optics,Biotechnology
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献