Adaptive parallel decision deep neural network for high-speed equalization

Author:

Zhang Luo,Jie Jian,Mingche Lai

Abstract

The equalization plays a pivotal role in modern high-speed optical wire-line transmission. Taking advantage of the digital signal processing architecture, the deep neural network (DNN) is introduced to realize the feedback-free signaling, which has no processing speed ceiling due to the timing constraint on the feedback path. To save the hardware resource of a DNN equalizer, a parallel decision DNN is proposed in this paper. By replacing the soft-max decision layer with hard decision layer, multi-symbol can be processed within one neural network. The neuron increment during parallelization is only linear with the layer count, rather than the neuron count in the case of duplication. The simulation results show that the optimized new architecture has competitive performance with the traditional 2-tap decision feedback equalizer architecture with 15-tap feed forward equalizer at a 28GBd, or even 56GBd, four-level pulse amplitude modulation signal with 30dB loss. And the training convergency of the proposed equalizer is much faster than its traditional counterpart. An adaptive mechanism of the network parameter based on forward error correction is also studied.

Funder

National Key Research and Development Program of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3