Affiliation:
1. University of Chinese Academy of Sciences
2. China-Russian Belt and Road Joint Laboratory on Laser Science
Abstract
In this paper, we report that the angular dispersion of the output pulses in a nonlinear process can be efficiently compensated by using a cascaded prism(s) and short hollow-core fiber (HCF) configuration. Here, the prism(s) is used to suppress the angular dispersion and transform it into spatial chirp, while the HCF is used for removing this spatial chirp and the residual angular dispersion, which can also significantly improve the beam quality. The feasibility of this novel method is numerically and experimentally investigated with the ultra-broadband idler pulses centered at 1250 nm wavelength and generated by an LBO crystal based non-collinear optical parametric amplifier. The proof-of-principle experiment shows that the angular dispersion can be effectively removed and ultra-broadband idler pulses with good spectral quality and spatial profile can be obtained. The total transmission efficiency in the experiment is around 67% and the measured
M
x
2
and
M
y
2
can reach 1.12 and 1.04, respectively. To the best of our knowledge, this is the first reported ultra-broadband angular dispersion compensation scheme combining prism(s) and HCF, which can remarkably eliminate the angular dispersion while simultaneously possesses high efficiency, good spectral and beam spatial quality.
Funder
National Key Research and Development Program of China
The Strategic Priority Research Program of the Chinese Academy of Sciences
National Natural Science Foundation of China
Program of Shanghai Academic Research Leader
Shanghai Municipal Science and Technology Major Project
Shanghai Sailing Program
Natural Science Foundation of Shanghai
Youth Innovation Promotion Association of the Chinese Academy of Sciences
International Partnership Program of Chinese Academy of Sciences
Subject
Atomic and Molecular Physics, and Optics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献