Speckle wavemeter based on a multi-core fiber and compressive imaging

Author:

Liu Huan,Kong Haole,He Jiajun,Qiu YanqingORCID,Mao Bangning,Meng Yanlong,Li Yanghui,Kang Juan,Wang Le,Li Yi

Abstract

Random speckle patterns contain valuable information about the incident light. Researchers have successfully constructed spectrometers and wavemeters by utilizing the speckles generated by inter-mode interferences of a multimode fiber (MMF). However, cameras were often employed to record the speckle data in previous reports. The camera's high cost (especially in the near-infrared range), large size, and low response speed limit the applications in optical communications, metrology, and optical sensing. A seven-core fiber (SCF) was fused with an MMF to capture the speckle pattern, where each core coupled part of the speckle field. Furthermore, we take advantage of the space division multiplexing capability of the SCF by incorporating an optical switch. This allows the variety of speckles generated by the incidence of different cores into the MMF. A convolutional neural network (CNN) regression algorithm was designed to analyze the complicated speckle data. The experimental results show that the proposed wavemeter can resolve adjacent wavelengths of 1 pm with an error of about 0.2 pm. We also discussed how different lengths of MMF influence the wavelength resolution. In conclusion, our research presents a robust and cost-effective approach to a wavelength measurement device by use of a seven-core optical fiber.

Funder

National Key Research and Development Program of China

Natural Science Foundation of Zhejiang Province

Basic Public Welfare Research Program of Zhejiang Province

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3