Dual-wavelength hybrid Tamm plasmonic laser

Author:

Shahed-E-Zumrat 1ORCID,Shahid Shadman1ORCID,Talukder Muhammad Anisuzzaman1ORCID

Affiliation:

1. Bangladesh University of Engineering and Technology

Abstract

Miniature lasers emitting dual-wavelength modes have diverse applications alongside the more explored single-mode counterparts. However, having dual-wavelength modes originating from a plasmonic-photonic hybrid laser is still a relatively new area for research. Compared to the amount of literature devoted to the physics of such hybrid cavities, only a few have analyzed their role in lasing applications. Notably, the role of hybrid cavities in dual-wavelength lasing is still unexplored. In this work, the properties of one-dimensional distributed Bragg reflectors and thin metal nanohole arrays come together to create a hybrid dual-mode plasmonic laser. The similar energy distribution characteristics of photonic and plasmonic lasers make hybrid structures a viable choice for efficient dual-mode lasing. In this work, the lasing cavity simultaneously excites photonic and Tamm plasmonic modes to generate dual-mode lasing. Consequently, the proposed laser shows high emission output with narrow linewidth and a clear and tunable mode separation.

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3