Affiliation:
1. Chongqing Three Gorges University
2. Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area
Abstract
Fiber SPR micro displacement sensor cannot be used for two-dimensional displacement sensing at present. In this paper, we proposed and demonstrated a fiber SPR two-dimensional micro displacement sensor based on the coaxial double waveguide with a conical structure. The coaxial double waveguide is fused into a cone as the light injection fiber, and two different forms of outgoing light fields can be obtained through two cores of the fiber. The horn shaped light field emitted by the ring core of the coaxial double waveguide can cooperate with the sensing fiber to realize the micro displacement sensing in the x-axis direction. And the straight beam emitted by the middle core of the coaxial double waveguide can cooperate with the sensing fiber to realize the micro displacement sensing in the y-axis direction. Through simulation analysis and experimental test, its average wavelength sensitivity and light intensity sensitivity of the x-axis displacement are 0.0537nm/µm and 0.000124a.u./µm, respectively. And that of the y-axis displacement are 0.315nm/µm and 0.00277a.u./µm, respectively. The proposed fiber sensor realizes the two-dimensional displacement sensing based on SPR, which can be widely used in the fields of two-dimensional micro displacement measurement and two-dimensional position precision positioning.
Funder
Science and Technology Planning Project of Guangdong Province
Fundamental Research Funds for Chongqing Three Gorges University of China
Chongqing Key Laboratory of Geological Environment Monitoring and Disaster Early-Warning in Three Gorges Reservoir Area
Science and Technology Project Affiliated to the Education Department of Chongqing Municipality
Natural Science Foundation of Chongqing
National Natural Science Foundation of China
Subject
Atomic and Molecular Physics, and Optics
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献