Affiliation:
1. Chengdu University of Information Technology
Abstract
Compared to pure vortex waves, the superposition state of spherical waves and vortex waves has enough degrees of freedom to upgrade applications in particle manipulation, information encryption, and large-capacity communications. Here, we propose a new scheme to achieve superposition states and multichannel transmission of vortex and spherical waves. Two transmissive all-silicon metasurfaces that enable mutual interference between linearly polarized (LP) waves in the terahertz region are demonstrated. Type A can achieve interference between x and y polarized waves, while type B can achieve interference between x (or y) and x (or y) polarized waves. The multichannel transmission and superposition states of topological charges of +3, +2, and +4 are designed and demonstrated from theoretical, simulative, and experimental perspectives at 1.1 THz. In addition, the objective fact that the focused superposition state must be observed close to the focal plane is also revealed. The measured results are in good agreement with the theoretical and simulative results. This work provides an idea for the design of ultrathin terahertz devices and could be applied in the fields of information encryption and high-frequency communications.
Funder
National Natural Science Foundation of China
Sichuan Science and Technology Program
Sichuan Science and Technology Major Projects
Jiangxi Innovative Talent Program
Subject
Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献