Deep learning and sub-band fluorescence imaging-based method for caries and calculus diagnosis embeddable on different smartphones

Author:

Wang Cheng1,Zhang Rongjun,Wei Xiaoling2,Wang Le,Wu Peiyu1,Yao Qi1ORCID

Affiliation:

1. Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences

2. Fudan University

Abstract

Popularizing community and home early caries screening is essential for caries prevention and treatment. However, a high-precision, low-cost, and portable automated screening tool is currently lacking. This study constructed an automated diagnosis model for dental caries and calculus using fluorescence sub-band imaging combined with deep learning. The proposed method is divided into two stages: the first stage collects imaging information of dental caries in different fluorescence spectral bands and obtains six-channel fluorescence images. The second stage employs a 2-D-3-D hybrid convolutional neural network combined with the attention mechanism for classification and diagnosis. The experiments demonstrate that the method has competitive performance compared to existing methods. In addition, the feasibility of transferring this approach to different smartphones is discussed. This highly accurate, low-cost, portable method has potential applications in community and at-home caries detection.

Funder

National Natural Science Foundation of China

State Key Laboratory of Applied Optics

School of Pharmacy, Fudan University

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. CFATransUnet: Channel-wise cross fusion attention and transformer for 2D medical image segmentation;Computers in Biology and Medicine;2024-01

2. Symmetry of pathological processes in the oral cavity;Stomatology for All / International Dental review;2023-12-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3